Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
J Formos Med Assoc ; 122(5): 376-383, 2023 May.
Article in English | MEDLINE | ID: covidwho-2303630

ABSTRACT

BACKGROUND/PURPOSE: Healthcare workers (HCWs) are at risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection due to occupational exposure. We aim to investigate the prevalence and risk factors of SARS-CoV-2 infection among HCWs during epidemic outbreak of omicron variant in Taiwan. METHODS: Sequential reserved serum samples collected from our previous study during December 2021 and July 2022 were tested for antibodies against SARS-CoV-2 nucleocapsid protein (NP). Diagnosis of SARS-CoV-2 infection was defined as positive either of anti-SARS-CoV-2 nucleoprotein, rapid antigen test or polymerase chain reaction. Retrospective chart review and a questionnaire were used to access the symptoms and risk factors for SARS-CoV-2 infection. RESULTS: Totally 300 participants (69.3% female) with a median age of 37.9 years were enrolled. A significant increase incidence of SARS-CoV-2 infection was found before and during community outbreak (11.91 versus 230.93 per 100,000 person-days, P < 0.001), which was a trend paralleling that observed in the general population. For 61 SARS-CoV-2 infected participants, nine (14.8%) were asymptomatic. Multivariate analysis revealed recent contact with a SARS-CoV-2 infected household (odds ratio [OR], 7.01; 95% confidence interval [95% CI], 3.70-13.30; P < 0.001) and co-existed underlying autoimmune diseases (OR, 4.46; 95% CI, 1.28-15.51; P = 0.019) were significant risk factors associated with acquisition of SARS-CoV-2 infection among HCWs. CONCLUSION: Community factors, such as closely contact with SARS-CoV-2 infected individuals and underlying immune suppression status, were significant factors for acquisition of SARS-CoV-2 infection among HCWs. We suggest the application of appropriate infection control measures for HCWs should be maintained to reduce risk of SARS-CoV-2 infection.


Subject(s)
COVID-19 , Humans , Female , Adult , Male , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Retrospective Studies , Taiwan/epidemiology , Disease Outbreaks/prevention & control , Health Personnel , Vaccination
2.
Anal Biochem ; 670: 115137, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-2275961

ABSTRACT

Chemiluminescence was used to test the susceptibility of the SARS-CoV-2 N and S proteins to oxidation by reactive oxygen species (ROS) at pH 7.4 and pH 8.5. The Fenton's system generates various ROS (H2O2, OH, -OH, OOH). All proteins were found to significantly suppress oxidation (the viral proteins exhibited 25-60% effect compared to albumin). In the second system, H2O2 was used both as a strong oxidant and as a ROS. A similar effect was observed (30-70%); N protein approached the effect of albumin at physiological pH (∼45%). In the O2.--generation system, albumin was most effective in the suppression of generated radicals (75%, pH 7.4). The viral proteins were more susceptible to oxidation (inhibition effect no more than 20%, compared to albumin). The standard antioxidant assay confirmed the strong antioxidant capacity of both viral proteins (1.5-1.7 fold higher than albumin). These results demonstrate the effective and significant inhibition of ROS-induced oxidation by the proteins. Obviously, the viral proteins could not be involved in the oxidative stress reactions during the course of the infection. They even suppress the metabolites involved in its progression. These results can be explained by their structure. Probably, an evolutionary self-defense mechanism of the virus has been developed.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Reactive Oxygen Species/metabolism , Antioxidants , Hydrogen Peroxide/metabolism , Spike Glycoprotein, Coronavirus , Nucleocapsid/metabolism , Inflammation , Albumins , Antibodies, Viral
3.
Anal Chim Acta ; 1234: 340522, 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2269394

ABSTRACT

At the end of 2019, the novel coronavirus disease 2019 (COVID-19), a cluster of atypical pneumonia caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been known as a highly contagious disease. Herein, we report the MXene/P-BiOCl/Ru(bpy)32+ heterojunction composite to construct an electrochemiluminescence (ECL) immunosensor for SARS-CoV-2 nucleocapsid protein (CoVNP) determination. Two-dimensional (2D) material ultrathin phosphorus-doped bismuth oxychloride (P-BiOCl) is exploited and first applied in ECL. 2D architectures MXene not only act as "soft substrate" to improve the properties of P-BiOCl, but also synergistically work with P-BiOCl. Owing to the inimitable set of bulk and interfacial properties, intrinsic high electrochemical conductivity, hydrophilicity and good biocompatible of 2D/2D MXene/P-BiOCl/Ru(bpy)32+, this as-exploited heterojunction composite is an efficient signal amplifier and co-reaction accelerator in the presence of tri-n-propylamine (TPA) as a coreactant. The proposed MXene/P-BiOCl/Ru(bpy)32+-TPA system exhibits a high and stable ECL signal and achieves ECL emission quenching for "signal on-off" recognition of CoVNP. Fascinatingly, the constructed ECL biosensor towards CoVNP allows a wide linear concentration range from 1 fg/mL to 10 ng/mL and a low limit of detection (LOD) of 0.49 fg/mL (S/N = 3). Furthermore, this presented strategy sheds light on designing a highly efficient ECL nanostructure through the combination of 2D MXene architectures with 2D semiconductor materials in the field of nanomedicine. This ECL biosensor can successfully detect CoVNP in human serum, which can promote the prosperity and development of diagnostic methods of SARS-CoV-2.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , Biosensing Techniques/methods , Bismuth , COVID-19/diagnosis , Electrochemical Techniques/methods , Immunoassay/methods , Luminescent Measurements/methods , Nucleocapsid Proteins , SARS-CoV-2
4.
ACS Infect Dis ; 9(3): 450-458, 2023 03 10.
Article in English | MEDLINE | ID: covidwho-2235358

ABSTRACT

The lateral flow assay format enables rapid, instrument-free, at-home testing for SARS-CoV-2. Due to the absence of signal amplification, this simplicity comes at a cost in sensitivity. Here, we enhance sensitivity by developing an amplified lateral flow assay that incorporates isothermal, enzyme-free signal amplification based on the mechanism of hybridization chain reaction (HCR). The simplicity of the user experience is maintained using a disposable 3-channel lateral flow device to automatically deliver reagents to the test region in three successive stages without user interaction. To perform a test, the user loads the sample, closes the device, and reads the result by eye after 60 min. Detecting gamma-irradiated SARS-CoV-2 virions in a mixture of saliva and extraction buffer, the current amplified HCR lateral flow assay achieves a limit of detection of 200 copies/µL using available antibodies to target the SARS-CoV-2 nucleocapsid protein. By comparison, five commercial unamplified lateral flow assays that use proprietary antibodies exhibit limits of detection of 500 copies/µL, 1000 copies/µL, 2000 copies/µL, 2000 copies/µL, and 20,000 copies/µL. By swapping out antibody probes to target different pathogens, amplified HCR lateral flow assays offer a platform for simple, rapid, and sensitive at-home testing for infectious diseases. As an alternative to viral protein detection, we further introduce an HCR lateral flow assay for viral RNA detection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19 Testing , Limit of Detection , RNA, Viral/genetics
5.
Sens Actuators B Chem ; 380: 133387, 2023 Apr 01.
Article in English | MEDLINE | ID: covidwho-2230735

ABSTRACT

Antigen-detecting rapid diagnostic testing (Ag-RDT) has contributed to containing the spread of SARS-CoV-2 variants of concern (VOCs). In this study, we proposed a biomimetic clamp assay for impedimetric SARS-CoV-2 nucleocapsid protein (Np) detection. The DNA biomimetic clamp (DNA-BC) is formed by a pair of Np aptamers connected via a T20 spacer. The 5'- terminal of the DNA-BC is phosphate-modified and then anchored on the surface of the screen-printed gold electrode, which has been pre-coated with Au@UiO-66-NH2. The integrated DNA-material sensing biochip is fabricated through the strong Zr-O-P bonds to form a clamp-type impedimetric aptasensor. It is demonstrated that the aptasensor could achieve Np detection in one step within 11 min and shows pronounced sensitivity with a detection limit of 0.31 pg mL-1. Above all, the aptasensor displays great specificity and stability under physiological conditions as well as various water environments. It is a potentially promising strategy to exploit reliable Ag-RDT products to confront the ongoing epidemic.

6.
Bioelectrochemistry ; 150: 108358, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2165106

ABSTRACT

A sensitive, reliable, and cost-effective detection for SARS-CoV-2 was urgently needed due to the rapid spread of COVID-19. Here, a "signal-on" magnetic-assisted PEC immunosensor was constructed for the quantitative detection of SARS-CoV-2 nucleocapsid (N) protein based on Z-scheme heterojunction. Fe3O4@SiO2@Au was used to connect the capture antibody to act as a capture probe (Fe3O4@SiO2@Au/Ab1). It can extract target analytes selectively in complex samples and multiple electrode rinsing and assembly steps were avoided effectively. CdTe QDs sensitized TiO2 coated on the surface of SiO2 spheres to form Z-scheme heterojunction (SiO2@TiO2@CdTe QDs), which broadened the optical absorption range and inhibited the quick recombination of photogenerated electron/hole of the composite. With fascinating photoelectric conversion performance, SiO2@TiO2@CdTe QDs were utilized as a signal label, thus further realizing signal amplification. The migration mechanism of photogenerated electrons was further deduced by active material quenching experiment and electron spin resonance (ESR) measurement. The elaborated immunosensor can detect SARS-CoV-2 N protein in the linear range of 0.005-50 ng mL-1 with a low detection limit of 1.8 pg mL-1 (S/N = 3). The immunosensor displays extraordinary sensitivity, strong anti-interference, and high reproducibility in detecting SARS-CoV-2 N protein, which envisages its potential application in the clinical diagnosis of COVID-19.


Subject(s)
Biosensing Techniques , COVID-19 , Cadmium Compounds , Nanocomposites , Quantum Dots , Humans , COVID-19/diagnosis , Electrochemical Techniques , Immunoassay , Limit of Detection , Magnetic Phenomena , Nucleocapsid Proteins , Reproducibility of Results , SARS-CoV-2 , Silicon Dioxide , Tellurium
7.
J Transl Autoimmun ; 5: 100175, 2022.
Article in English | MEDLINE | ID: covidwho-2122656

ABSTRACT

Introduction: Viral infections have been implicated in the initiation of the autoimmune diseases. Recent reports suggest that a proportion of patients with COVID-19 develop severe disease with multiple organ injuries. We evaluated the relationship between COVID-19 severity, prevalence and persistence of antinuclear and other systemic and organ specific autoantibodies as well as SARS-CoV-2 infection specific anti-nucleocapsid (N) IgG antibodies and protective neutralizing antibody (Nab) levels. Methods: Samples from 119 COVID-19 patients categorized based on their level of care and 284 healthy subjects were tested for the presence and persistence of antinuclear and other systemic and organ specific autoantibodies as well as SARS-CoV-2 and neutralizing antibody levels. Results: The data shows significantly increased levels of anti RNP-A, anti-nucleocapsid and neutralizing antibody among patients receiving ICU care compared to non-ICU care. Furthermore, subjects receiving ICU care demonstrated significantly higher nucleocapsid IgG levels among the RNP-A positive cohort compared to RNP-A negative cohort. Notably, the expression of anti RNP-A antibodies is transient that reverts to non-reactive status between 20 and 60 days post symptom onset. Conclusions: COVID-19 patients in ICU care exhibit significantly higher levels of transient RNP-A autoantibodies, anti-nucleocapsid, and SARS-CoV-2 neutralizing antibodies compared to patients in non-ICU care.

8.
Anal Chim Acta ; 1233: 340486, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2060277

ABSTRACT

The SARS-CoV-2 pandemic has posed a huge challenge to rapid and accurate diagnosis of SARS-CoV-2 in the early stage of infection. In this work, we developed a novel magnetic/fluorescent dual-modal lateral flow immunoassay (LFIA) based on multifunctional nanobeads for rapid and accurate determination of SARS-CoV-2 nucleocapsid protein (NP). The multifunctional nanobeads were fabricated by using polyethyleneimine (PEI) as a mediate shell to combine superparamagnetic Fe3O4 core with dual quantum dot shells (MagDQD). The core-shell structure of MagDQD label with high loading density of quantum dots (QDs) and superior magnetic content realized LFIA with dual quantitative analysis modal from the assemblies of individual single nanoparticles. The LFIA integrated the advantages of magnetic signal and fluorescent signal, resulting excellent accuracy for quantitative analysis and high elasticity of the overall detection. In addition, magnetic signal and fluorescent signal both had high sensitivity with the limit of detection (LOD) as 0.235 ng mL-1 and 0.012 ng mL-1, respectively. The recovery rates of the methods in simulated saliva samples were 91.36%-103.60% (magnetic signal) and 94.39%-104.38% (fluorescent signal). The results indicate the method has a considerable potential to be an effective tool for diagnose SARS-CoV-2 in the early stage of infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Polyethyleneimine , COVID-19/diagnosis , Immunoassay/methods , Magnetic Phenomena
9.
Biosens Bioelectron ; 218: 114737, 2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2041594

ABSTRACT

Lateral flow immunoassays (LFIA) have a plethora of applications in health, environmental and food sectors for low-cost, simple, and rapid point-of-need testing. Typically, the user only needs to add the sample without any other intervention from sample application to results. A compelling challenge, and a constant pursuit in LFIA is to improve the assay sensitivity without compromising the simplicity and practicality. We report that the addition of water-soluble macromolecular crowding agents leads to an enhancement of the sensitivity, which is attributed to the fact that the exposure of antibodies and micro/nanoparticle conjugates to macromolecularly crowded environment, while migrating through the confining pores of the strip-pads by capillary forces, promotes the interactions that are responsible for analyte recognition and signal generation. The effect was shown by using two of the most widely established LFIA tests worldwide, that is, detection of nucleocapsid protein from SARS-CoV-2 associated with COVID-19 and detection of Strep-A antigen from Streptococcus pyogenes associated with pharyngitis. For immediate demonstration of the sensitivity enhancement, we worked directly on commercially available devices already optimized in terms of reagents and conditions. Of the crowders used, ficoll, Mr 400000, and ficoll, Mr 70000, gave a 5-10-fold improvement of the signal without affecting the background. Because the addition of macromolecular crowding agents is complementary to other strategies of sensitivity enhancement, such as the design of novel labels and the introduction of signal amplification, we anticipate that the proposed modulation will be extended to numerous analytes with a variety of reporters and LFIA configurations.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , SARS-CoV-2 , COVID-19/diagnosis , Ficoll , Immunoassay/methods , Nucleocapsid Proteins , Water , Sensitivity and Specificity
10.
Sensors and Actuators B: Chemical ; 371:132602, 2022.
Article in English | ScienceDirect | ID: covidwho-2008121

ABSTRACT

The morphology of electrochemiluminescence (ECL) emitters is closely related to ECL properties, thus the control of their morphology is greatly essential for ECL applications. Herein, a facile nanoprecipitation method was developed to realize controllable morphology of iridium complex nanomaterials by modulating the volume ratio of poly(styrene-co-maleicanhydride) (PSMA) to tris (2-phenylpyridine) iridium(Ⅲ) (Ir(ppy)3). Furthermore, ECL properties of iridium complex nanomaterials with different morphologies were explored through a series of experiments. Iridium complex nanoparticles (Ir NPs) with excellent ECL performance were selected as admirable ECL emitters to construct biosensors. Ir NPs served as the matrix to stepwise capture primary antibody, antigen of SARS-CoV-2 nucleocapsid protein (ncovNP) and secondary antibody bioconjugate coupled with dual quenchers and detection antibody. Taking advantage of the significant quenching effect of noradrenaline (NA) and gold nanoparticles (Au NPs) in the secondary antibody bioconjugate on ECL emission from Ir NPs, the developed ECL biosensor realized the sensitive detection of ncovNP and the detection limit was as low as 47 fg/mL. The integration of morphology-controlled iridium complex nanomaterials and dual quenchers NA and Au NPs provides a promising ECL platform.

11.
Cell ; 185(19): 3603-3616.e13, 2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-2003917

ABSTRACT

The effects of mutations in continuously emerging variants of SARS-CoV-2 are a major concern for the performance of rapid antigen tests. To evaluate the impact of mutations on 17 antibodies used in 11 commercially available antigen tests with emergency use authorization, we measured antibody binding for all possible Nucleocapsid point mutations using a mammalian surface-display platform and deep mutational scanning. The results provide a complete map of the antibodies' epitopes and their susceptibility to mutational escape. Our data predict no vulnerabilities for detection of mutations found in variants of concern. We confirm this using the commercial tests and sequence-confirmed COVID-19 patient samples. The antibody escape mutational profiles generated here serve as a valuable resource for predicting the performance of rapid antigen tests against past, current, as well as any possible future variants of SARS-CoV-2, establishing the direct clinical and public health utility of our system.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Epitopes/genetics , Humans , Mammals , Mutation , Nucleocapsid , SARS-CoV-2/genetics
12.
J Food Biochem ; 46(10): e14262, 2022 10.
Article in English | MEDLINE | ID: covidwho-1922970

ABSTRACT

SARS-CoV-2 has been responsible for causing 6,218,308 deaths globally till date and has garnered worldwide attention. The lack of effective preventive and therapeutic drugs against SARS-CoV-2 has further worsened the scenario and has bolstered research in the area. The N-terminal and C-terminal RNA binding domains (NTD and CTD) of SARS-CoV-2 nucleocapsid protein represent attractive therapeutic drug targets. Naturally occurring compounds are an excellent source of novel drug candidates due to their structural diversity and safety. Ten major bioactive compounds were identified in ethanolic extract (s) of Cinnamomum zeylanicum, Cinnamomum tamala, Origanum vulgare, and Petroselinum crispum using HPLC and their cytotoxic potential was determined against cancer and normal cell lines by MTT assay to ascertain their biological activity in vitro. To evaluate their antiviral potential, the binding efficacy to NTD and CTD of SARS-CoV-2 nucleocapsid protein was determined using in silico biology tools. In silico assessment of the phytocomponents revealed that most of the phytoconstituents displayed a druglike character with no predicted toxicity. Binding affinities were in the order apigenin > catechin > apiin toward SARS-CoV-2 nucleocapsid NTD. Toward nucleocapsid CTD, the affinity decreased as apigenin > cinnamic acid > catechin. Remdesivir displayed lesser affinity with NTD and CTD of SARS-CoV-2 nucleocapsid proteins than any of the studied phytoconstituents. Molecular dynamics (MD) simulation results revealed that throughout the 100 ns simulation, SARS-CoV-2 nucleocapsid protein NTD-apigenin complex displayed greater stability than SARS-CoV-2 nucleocapsid protein NTD-cinnamic acid complex. Hence, apigenin, catechin, apiin and cinnamic acid might prove as effective prophylactic and therapeutic candidates against SARS-CoV-2, if examined further in vitro and in vivo. PRACTICAL APPLICATIONS: Ten major bioactive compounds were identified in the extract(s) of four medicinally important plants viz. Cinnamomum zeylanicum, Cinnamomum tamala, Origanum vulgare and Petroselinum crispum using HPLC and their biological activity was also evaluated against cancer and normal cell lines. Interestingly, while all extract(s) wielded significant cytotoxicity against cancer cells, no significant toxicity was found against normal cells. The outcome of the results prompted evaluation of the antiviral potential of the ten bioactive compounds using in silico biology tools. The present study emphasizes on the application of computational approaches to understand the binding interaction and efficacy of the ten bioactive compounds from the above plants with SARS-CoV-2 nucleocapsid protein N-terminal and C-terminal RNA binding domains in preventing and/or treating COVID-19 using in silico tools. Druglikeness and toxicity profiles of the compounds were carried out to check the therapeutic application of the components. Additionally, molecular dynamics (MD) simulation was performed to check the stability of ligand-protein complexes. The results provided useful insights into the structural binding interaction(s) that can be exploited for the further development of potential antiviral agents targeting SARS-CoV-2 especially since no specific therapy is still available to combat the rapidly evolving virus and the existing treatment is more or less symptomatic which makes search for novel antiviral agents all the more necessary and crucial.


Subject(s)
COVID-19 Drug Treatment , Catechin , Laurus , Origanum , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Apigenin , Cinnamates , Cinnamomum zeylanicum/metabolism , Dietary Supplements , Laurus/metabolism , Ligands , Petroselinum/metabolism , SARS-CoV-2
13.
ACS Sens ; 7(7): 1985-1995, 2022 07 22.
Article in English | MEDLINE | ID: covidwho-1908098

ABSTRACT

To control the coronavirus disease 2019 (COVID-19) pandemic, there is an urgent need for simple, rapid, and reliable detection methods to identify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, especially in community hospitals or clinical centers. The SARS-CoV-2 nucleocapsid protein (NP) is an important index for diagnosis of COVID-19. Here, we proposed a smartphone-based high-throughput fiber-integrated immunosensing system (HFIS) for detecting the SARS-CoV-2 NP in serum samples within 45 min. For the testing of NP standards, the linear detection range was 7.8-1000 pg/mL, the limit of detection was 7.5 pg/mL, and the cut-off value was 8.923 pg/mL. Twenty-five serum samples from clinically diagnosed COVID-19 patients and 100 negative control samples from healthy blood donors were tested for SARS-CoV-2 NP by HFIS, and the obtained results were compared with those of ELISA and Simple Western analysis. The results showed that the HFIS sensitivity and specificity were 72% [95% confidence interval (CI): 52.42-85.72%] and 100% (95% CI: 96.11-100%), respectively, which significantly correlated with those from the commercial ELISA kit and Simple Western analysis. This portable high-throughput HFIS assay could be an alternative test for detecting SARS-CoV-2 NP in blood samples on site.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Pandemics , Point-of-Care Testing , Smartphone
14.
Int J Electrochem Sci ; 17(5): 220541, 2022 May.
Article in English | MEDLINE | ID: covidwho-1847942

ABSTRACT

Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV CoV-2) pathogen and protein biomarkers can improve the diagnosis accuracy for Coronavirus disease 2019 (COVID-19). Electrochemical biosensors have attracted extensive attention in the scientific community because of their simple design, fast response, good portability, high sensitivity and high selectivity. In this review, we summarized the progress in the electrochemical detection of COVID-19 pathogen and SARS-CoV-2 biomarkers, including SARS-CoV-2 spike protein and nucleocapsid protein and their antibodies.

15.
J Mol Biol ; 434(9): 167516, 2022 05 15.
Article in English | MEDLINE | ID: covidwho-1712817

ABSTRACT

Stress granule (SG) formation mediated by Ras GTPase-activating protein-binding protein 1 (G3BP1) constitutes a key obstacle for viral replication, which makes G3BP1 a frequent target for viruses. For instance, the SARS-CoV-2 nucleocapsid (N) protein interacts with G3BP1 directly to suppress SG assembly and promote viral production. However, the molecular basis for the SARS-CoV-2 N - G3BP1 interaction remains elusive. Here we report biochemical and structural analyses of the SARS-CoV-2 N - G3BP1 interaction, revealing differential contributions of various regions of SARS-CoV-2 N to G3BP1 binding. The crystal structure of the NTF2-like domain of G3BP1 (G3BP1NTF2) in complex with a peptide derived from SARS-CoV-2 N (residues 1-25, N1-25) reveals that SARS-CoV-2 N1-25 occupies a conserved surface groove of G3BP1NTF2 via surface complementarity. We show that a φ-x-F (φ, hydrophobic residue) motif constitutes the primary determinant for G3BP1NTF2-targeting proteins, while the flanking sequence underpins diverse secondary interactions. We demonstrate that mutation of key interaction residues of the SARS-CoV-2 N1-25 - G3BP1NTF2 complex leads to disruption of the SARS-CoV-2 N - G3BP1 interaction in vitro. Together, these results provide a molecular basis of the strain-specific interaction between SARS-CoV-2 N and G3BP1, which has important implications for the development of novel therapeutic strategies against SARS-CoV-2 infection.


Subject(s)
Coronavirus Nucleocapsid Proteins , DNA Helicases , Poly-ADP-Ribose Binding Proteins , Protein Interaction Domains and Motifs , RNA Helicases , SARS-CoV-2 , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/genetics , Crystallography , DNA Helicases/chemistry , Humans , Mutation , Phosphoproteins/chemistry , Phosphoproteins/genetics , Poly-ADP-Ribose Binding Proteins/chemistry , RNA Helicases/chemistry , RNA Recognition Motif Proteins/chemistry
16.
Biosens Bioelectron ; 203: 114018, 2022 May 01.
Article in English | MEDLINE | ID: covidwho-1648431

ABSTRACT

Multiplex electrochemical biosensors have been used for eliminating the matrix effect in complex bodily fluids or enabling the detection of two or more bioanalytes, overall resulting in more sensitive assays and accurate diagnostics. Many electrochemical biosensors lack reliable and low-cost multiplexing to meet the requirements of point-of-care detection due to either limited functional biosensors for multi-electrode detection or incompatible readout systems. We developed a new dual electrochemical biosensing unit accompanied by a customized potentiostat to address the unmet need for point-of-care multi-electrode electrochemical biosensing. The two-working electrode system was developed using screen-printing of a carboxyl-rich nanomaterial containing ink, with both working electrodes offering active sites for recognition of bioanalytes. The low-cost bi-potentiostat system (∼$80) was developed and customized specifically to the bi-electrode design and used for rapid, repeatable, and accurate measurement of electrochemical impedance spectroscopy signals from the dual biosensor. This binary electrochemical data acquisition (Bi-ECDAQ) system accurately and selectively detected SARS-CoV-2 Nucleocapsid protein (N-protein) in both spiked samples and clinical nasopharyngeal swab samples of COVID-19 patients within 30 min. The two working electrodes offered the limit of detection of 116 fg/mL and 150 fg/mL, respectively, with the dynamic detection range of 1-10,000 pg/mL and the sensitivity range of 2744-2936 Ω mL/pg.mm2 for the detection of N-protein. The potentiostat performed comparable or better than commercial Autolab potentiostats while it is significantly lower cost. The open-source Bi-ECDAQ presents a customizable and flexible approach towards addressing the need for rapid and accurate point-of-care electrochemical biosensors for the rapid detection of various diseases.


Subject(s)
Biosensing Techniques , COVID-19 , Biosensing Techniques/methods , COVID-19/diagnosis , Electrochemical Techniques/methods , Electrodes , Humans , Nucleocapsid Proteins , SARS-CoV-2
17.
Int J Biol Macromol ; 203: 466-480, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1630871

ABSTRACT

The SARS-CoV-2 nucleocapsid protein (N) is a multifunctional promiscuous nucleic acid-binding protein, which plays a major role in nucleocapsid assembly and discontinuous RNA transcription, facilitating the template switch of transcriptional regulatory sequences (TRS). Here, we dissect the structural features of the N protein N-terminal domain (N-NTD) and N-NTD plus the SR-rich motif (N-NTD-SR) upon binding to single and double-stranded TRS DNA, as well as their activities for dsTRS melting and TRS-induced liquid-liquid phase separation (LLPS). Our study gives insights on the specificity for N-NTD(-SR) interaction with TRS. We observed an approximation of the triple-thymidine (TTT) motif of the TRS to ß-sheet II, giving rise to an orientation difference of ~25° between dsTRS and non-specific sequence (dsNS). It led to a local unfavorable energetic contribution that might trigger the melting activity. The thermodynamic parameters of binding of ssTRSs and dsTRS suggested that the duplex dissociation of the dsTRS in the binding cleft is entropically favorable. We showed a preference for TRS in the formation of liquid condensates when compared to NS. Moreover, our results on DNA binding may serve as a starting point for the design of inhibitors, including aptamers, against N, a possible therapeutic target essential for the virus infectivity.


Subject(s)
COVID-19/virology , Nucleic Acids/metabolism , Nucleocapsid Proteins/metabolism , Protein Interaction Domains and Motifs , SARS-CoV-2/physiology , Binding Sites , DNA/chemistry , DNA/metabolism , Gene Expression Regulation, Viral , Host-Pathogen Interactions , Humans , Hydrogen Bonding , Models, Molecular , Nucleic Acids/chemistry , Nucleocapsid Proteins/chemistry , Protein Binding , RNA/chemistry , RNA/metabolism , Spectrum Analysis , Structure-Activity Relationship
18.
J Med Virol ; 94(4): 1633-1640, 2022 04.
Article in English | MEDLINE | ID: covidwho-1568204

ABSTRACT

The coronavirus disease 2019 (COVID-19) is outbreaking all over the world. To help fight this disease, it is necessary to establish an effective and rapid detection method. The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is involved in viral replication, assembly, and immune regulation and plays an important role in the viral life cycle. Moreover, the N protein also could be a diagnostic factor and potential drug target. Therefore, by synthesizing the N gene sequence of SARS-CoV-2, constructing the pET-28a (+)-N recombinant plasmid, we expressed the N protein in Escherichia coli and obtained 15 monoclonal antibody (mAbs) against SARS-CoV-2-N protein by the hybridomas and ascites, then an immunochromatographic test strip method detecting N antigen was established. In this study, we obtained 14 high-titer and high-specificity monoclonal antibodies, and the test strips exclusively react with the SARS-CoV-2-N protein and no cross-reactivity with other coronavirus and also recognize the recombinant N protein of Delta (B.1.617.2) variant. These mAbs can be used for the early and rapid diagnosis of SARS-CoV-2 infection through serological antigen.


Subject(s)
Antibodies, Monoclonal/immunology , COVID-19 Serological Testing/instrumentation , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/isolation & purification , Animals , COVID-19/blood , COVID-19/diagnosis , COVID-19 Serological Testing/methods , Coronavirus Nucleocapsid Proteins/blood , Coronavirus Nucleocapsid Proteins/genetics , Humans , Immunoassay , Mice , Mutation , Phosphoproteins/blood , Phosphoproteins/genetics , Phosphoproteins/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Sensitivity and Specificity
19.
Biosens Bioelectron ; 198: 113823, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1520727

ABSTRACT

Direct in situ fluorescent enzyme-linked immunosorbent assay (ELISA) is rarely investigated and reported. Herein, a direct in situ high-performance HRP-labeled fluorescent immunoassay platform was constructed. The platform was developed based on a rapid in situ fluorogenic reaction between Polyethyleneimine (PEI) and p-Phenylenediamine (PPD) analogues to generate fluorescent copolymer nanoparticles (FCNPs). The formation mechanism of FCNPs was found to be the oxidation of •OH radicals, which was further proved by nitrogen protection and scavenger of •OH radicals. Meantime, the fluorescence wavelength of FCNPs could be adjusted from 471 to 512 nm by introducing various substitution groups into the PPD structure. Using cardiac troponin I (cTnI) and SARS-CoV-2 nucleocapsid protein (N-protein) as the model antigens, the proposed fluorescent ELISA exhibited a wide dynamic range of 5-180 ng/mL and a low limit of detection (LOD) of 0.19 ng/mL for cTnI, and dynamic range of 0-120 ng/mL and a LOD of 0.33 ng/mL for SARS-CoV-2 N protein, respectively. Noteworthy, the proposed method was successful applied to evaluate the cTnI and SARS-CoV-2 N protein levels in serum with satisfied results. Therefore, the proposed platform paved ways for developing novel fluorescence-based HRP-labeled ELISA technologies and broadening biomarker related clinical diagnostics.


Subject(s)
Biosensing Techniques , COVID-19 , Enzyme-Linked Immunosorbent Assay , Horseradish Peroxidase , Humans , Immunoassay , Nucleocapsid Proteins , SARS-CoV-2 , Troponin I
20.
Monoclon Antib Immunodiagn Immunother ; 40(5): 210-218, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1483363

ABSTRACT

The novel coronavirus disease (COVID-19), known as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), exhibits a strong human-to-human transmission infectivity and could cause acute respiratory infections. Therefore, simple and rapid serological testing is urgently needed to recognize positive cases. In this study, a point-of-care serological test based on lateral flow immunoassay (LFIA) was developed and its application for the simultaneous detection of IgM/IgG antibodies against SARS-CoV-2 was evaluated. The recombinant SARS-CoV-2 antigens were conjugated to the produced colloidal gold nanoparticles and used as the detection reagent. This test required only 10-15 minutes to achieve simultaneous qualitative detection of IgM/IgG antibodies specific to SARS-CoV-2 in 20 µL of serum or plasma samples. The clinical performance and reliability of the assay were evaluated by performing the test with 60 samples and comparing the results of these tests with those obtained via real-time polymerase chain reaction. The sensitivity and specificity of our assay were defined to be 90% and 96.6%, respectively. The presented LFIA was sufficiently sensitive and accurate to be used for the rapid diagnosis of coronavirus disease 2019 in laboratories or in patient care settings, particularly in emergency conditions, in which many samples require to be evaluated on time.


Subject(s)
Immunoassay/methods , Immunoglobulin G/blood , Immunoglobulin M/blood , Metal Nanoparticles/chemistry , SARS-CoV-2/immunology , Antibodies, Viral/blood , COVID-19 Serological Testing/methods , Colloids/chemistry , Cross Reactions , Gold , Humans , Immunoassay/instrumentation , Reagent Strips , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL